Solutions

3.6: Forced Oscillations and Resonance

In Section 3.4 we derived the differential equation

$$mx'' + cx' + kx = F(t).$$
 (1)

We wish now to consider what happens when $F(t) = F_0 \cos \omega t$ or $F(t) = F_0 \sin \omega t$.

An example of when this can occur is when there is a rotating machine component involved in the mass which can provide a simple harmonic force. We arrive at the differential equation

$$mx'' + kx = F_0 \cos \omega t. \tag{2}$$

Undamped Forced Oscillations: To study the undamped oscillations under the influence of the external force $F(t) = F_0 \cos \omega t$, we set c = 0 in Equation (1) and begin with the equation

$$mx'' + kx = F_0 \cos \omega t \tag{3}$$

whose complimentary solution is $x_c = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t$, where $\omega_0 = \sqrt{k/m}$ is the **natural frequency** of the mass-spring system. We can also see that the particular solution is of the form $x_p = A \cos \omega t$, where ω is the **circular frequency**. Suppose $\omega \neq \omega_0$. (Why?) Taking derivative of x_p and plugging into Equation (2), we get

$$-m\omega^2\cos\omega t + kA\cos\omega t = F_0\cos\omega t$$

so that

$$A = \frac{F_0}{k - m\omega^2} = \frac{F_0/m}{\omega_0^2 - \omega^2}.$$
 (4)

Therefore, the general solution $x = x_c + x_p$ is given by

$$x(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + \frac{F_0/m}{\omega_0^2 - \omega^2} \cos \omega t.$$
 (5)

Just as in Section 3.4, this becomes

$$x(t) = C\cos(\omega_0 t - \alpha) + \frac{F_0/m}{\omega_0^2 - \omega^2}\cos\omega t.$$
 (6)

Example 1. (Undamped Forced Oscillations) Suppose that m = 1, k = 9, $F_0 = 80$ and $\omega = 5$ in (2). Find x(t) if x(0) = x'(0) = 0.

Beats:

If x(0) = x'(0) = 0 then the solution to (2) can be arranged as

$$\frac{2F_0}{m(\omega_0^2 - \omega^2)} \sin \frac{1}{2}(\omega_0 - \omega)t \sin \frac{1}{2}(\omega_0 + \omega)t.$$

We see that if $|\omega-\omega_0|$ is small we get a rapid oscillation plus a slowing varying amplitude.

Example 2. When m = 0.1, $F_0 = 50$, $\omega_0 = 55$ and $\omega = 45$ in (2), the solution written as above is given by

$$x(t) = \sin 5t \sin 50t$$

and the solution curve looks as below.

When $\omega_0 = \omega$ in (2) we see that the complementary and particular solutions would have the same form. In this case we see the phenomenon of resonance.

If
$$\chi(o) = \chi'(o) = 0$$
, then $C_1 = \frac{-F_0}{m \lfloor \omega_0^2 - \omega^2 \rfloor}$ and $C_2 = 0$ in Equation (S).
So $\chi(t) = \frac{F_0}{m \lfloor \omega_0^2 - \omega^2 \rfloor} (cosust - cosust) = \frac{2F_0}{m \lfloor \omega_0^2 - \omega^2 \rfloor} sin \frac{1}{2} \lfloor \omega_0 - \omega \rfloor t sin \frac{1}{2} \lfloor \omega_0 + \omega \rfloor t$.
Note that if $\omega_0 \approx \omega$, then we have rapid oscillations with slowly varying amplitude $A(t) = \frac{2F_0}{m \lfloor \omega_0^2 - \omega^2 \rfloor} sin \frac{1}{2} \lfloor \omega_0 - \omega \rfloor t$.

Example 3. (Resonance) Suppose that in (2) we have that m = 5 kg and k = 500 N/m. Then the natural frequency is $\omega_0 = 10$ rad/s. If the flywheel revolves at the same rate, then the solution curve looks as below.

More Complex Examples:

FIGURE 3.6.6. The washboard road surface of Example 5.

FIGURE 3.6.7. The "unicycle model" of a car.

Damped Forced Oscillations: Consider now the full generality of Equation (2):

$$Cx' + mx'' + kx = F_0 \cos \omega t.$$

In this case, we can apply the same trig laws as in Section 3.4 to get

Then

and

Use ?

$$x_p = C\cos(\omega t - \alpha).$$

Example 4. Find the transient motion (x_c) and the steady periodic oscillations (x_p) of a damped mass-and-spring system with m = 1, c = 2, and k = 26 under the influence of an external force $F(t) = 82 \cos 4t$ with x(0) = 6 and x'(0) = 0. Also investigate the possibility of practical resonance for this system; i.e. what values of ω maximize the forced amplitude?

$$\begin{aligned} x''+2x'+26x=62\cos 4t; \quad xlo)=6, \quad x'(u)=0 \\ r^{2}+2r+26=(r+1)^{2}+25=0 = 7 \quad r=-1\pm 5i \quad and \\ x_{c}=e^{t}(c,\cos 5t+c_{2}\sin 5t) \quad (Underdamped) \\ x_{p}=A\cos 4t+B\sin 4t. = 7 \quad Solve for A+B foget \quad x_{p}=5\cos 4t+4\sin 4t. \\ xltl=e^{t}(c,\cos 5t+c_{2}\sin 5t)+5\cos 4t+4\sin 4t. \\ x'ltl=e^{t}(c,\cos 5t+c_{2}\sin 5t)+e^{t}(-5c,\sin 5t+5c_{2}\cos 5t)-20\sin 4t+16\cos 4t. \\ nitial values to get c=1 and c_{2}=-3 \quad so that \\ xltl=e^{t}(\cos 5t-3\sin 5t)+5\cos 4t+4\sin 4t \\ = e^{t}(\cos 5t-3\sin 5t)+5\cos 4t+4\sin 4t \\ = e^{t}(\cos 5t-3\sin 5t)+5\cos 4t+4\sin 4t \\ = e^{t}(\cos 5t-3\sin 5t)+5\cos 4t+4\sin 4t \\ = strady periodic oscillations. \end{aligned}$$

Suppose we wish to maximize the resonance (or possibly avoid the maximum), The practical resonance is where this maximum occurs. This depends on the circular frequency w.

Consider $x' + 2x' + 26x = 82 \cos \omega t$. Then, if $\omega \neq \omega_0$, we have $X_p = A \cos \omega t + B \sin \omega t = C \cos(\omega t - x)$, where $C = \int \overline{A^2 + B^2}$ is the amplitude of the stendy periodic oscillation. We can solve for A and B in general in Equation (2) to be $A = \frac{(K - m\omega^2)^2 + (c\omega)^2}{(K - m\omega^2)^2 + (c\omega)^2}$ and Thus $C(\omega) = \frac{F_0}{\int (K - m\omega^2)^2 + (c\omega)^2}$. Continue to next page. $B = \frac{C \omega F_0}{(K - m\omega^2)^2 + (c\omega)^2}$.

FIGURE 3.6.8. Solutions of the initial value problem in (24) with $x_0 = -20, -10, 0, 10, \text{ and } 20.$

FIGURE 3.6.9. Plot of amplitude C versus external frequency ω .

To investigate the possibility of practical resonance in the given system, we substitute the values m = 1, c = 2, and k = 26 in (21) and find that the forced amplitude at frequency ω is

$$C(\omega) = \frac{82}{\sqrt{676 - 48\omega^2 + \omega^4}}$$

The graph of $C(\omega)$ is shown in Fig. 3.6.9. The maximum amplitude occurs when

$$C'(\omega) = \frac{-41(4\omega^3 - 96\omega)}{(676 - 48\omega^2 + \omega^4)^{3/2}} = \frac{-164\omega(\omega^2 - 24)}{(676 - 48\omega^2 + \omega^4)^{3/2}} = 0.$$

Thus practical resonance occurs when the external frequency is $\omega = \sqrt{24}$ (a bit less than the mass-and-spring's undamped critical frequency of $\omega_0 = \sqrt{k/m} = \sqrt{26}$).